"物理学"一级学科硕士学位研究生培养方案

(学科代码: 070200) (2012 年制订)

一、培养目标

本学科培养德、智、体全面发展的,可以胜任高等学校和研究单位或生产单位的研究、教学及 高技术开发工作的高级专门人才。

- 1、树立爱国主义和集体主义思想,掌握辩证唯物主义和历史唯物主义的基本原理,树立科学的世界观与方法论。具有良好的敬业精神和科学道德,品行优良。
- 2、能够适应科学进步及社会发展的需要,掌握本学科坚实的基础理论、系统的专门知识及现代 实验方法和技能,具有从事科学研究或独立担负专门技术工作的能力;有严谨的科研作风,良好的 合作精神和较强的交流能力;掌握一门外国语,熟练地阅读专业文献资料和撰写论文摘要。
 - 3、积极参加体育锻炼,具有健康的体魄。

二、学科、专业方向

- 1、凝聚态物理 (研究方向: 计算物质科学、自旋电子学、光电材料与器件)
- 2、光学 (研究方向: 光电材料与器件、激光技术与应用)
- 3、理论物理 (研究方向:生物物理、量子计算与量子信息)
- 4、粒子物理与原子核物理(研究方向: 粒子物理与宇宙学)

三、 学习年限

全日制硕士研究生的基本学制为3年。研究生在校修业年限(含休学、保留学籍、延期毕业) 最长不得超过5年。

四、课程设置与学分要求

本学科硕士研究生课程分为学位课程和非学位课程两大类,实行学分制。其中学位课程又分为公共学位课与专业学位课,非学位课程分为必修课和选修课。专业课程每16学时计1学分。最低学分要求为30学分,其中学位课不少于18学分,非学位课不少于9学分,教学实践为1学分,社会实践为1学分,学术活动为1学分。学位课程原则上采取考试方式,非学位课程可采取考试或考查的方式,成绩60分及以上为合格,成绩合格者,方能取得相应的学分。考试成绩一律采用百分制记分。

1、公共学位课程

(1) 政治理论课:政治理论课为必修课程由学校统一安排,时间为一学期,3学分。

 中国特色社会主义理论与实践研究
 36 学时
 2 学分
 秋学期

 自然辩证法概论
 18 学时
 1 学分
 秋学期

- (2) 外国语课程:外国语以英语为主要语种,实行分类教学,必修6学分。其中基础英语3学分,专业英语1.5学分,为公共必修课;高级英语和应用英语类课程为任选课,每门课1.5学分,至少选修一门。
- ① 基础英语: 凡大学英语六级考试成绩 426 分及以上或雅思成绩 6.5 分及以上或托福成绩 85 分及以上者,均可申请免修研究生基础英语,直接获得 3 学分: 不符合免修条件的研究生,应参加

研究生基础英语课程学习,考试合格方可获得 3 学分;既不符合申请免修条件又不参加研究生基础 英语学习的研究生,须与研究生处签订协议,在申请硕士学位前自学研究生基础英语并达到上述申 请免修条件,方可获得 3 学分。

- ② 专业外语:专业外语一般应与专业课学习及外文文献查阅或学位(毕业)论文准备工作相结合,要求学生阅读量不低于15万字。具体的课程设置见《物理学专业硕士学位研究生课程设置一览表》。
- ③ 高级英语:凡获得基础英语免修资格的研究生可以选修高级英语课程,考试合格,可取得1.5 学分。
- ④ 应用英语类课程:研究生可以根据自身发展需要选修研究生应用英语类课程,考试合格,可取得1.5学分。

2、专业学位课程

专业学位课程按照主要的培养方向设置。具体的课程设置见"物理学"一级学科硕士学位研究生课程设置表。

3、非学位课程

非学位课程分为必修和选修两类,每门课程一般为 2 学分,是学位课程的补充与扩展,主要为一般性的学科应用基础课和与研究方向有关的相应课程。考核方式由任课教师自行决定。

4、补修课程

同等学力考入的硕士研究生,必须补修本学科大学本科主要课程 2-3 门。补修课程为《电动力学》、《量子力学》、《激光原理》。补修课程由学院根据本科生的教学计划,统筹安排。补修课程不计学分。

部分研究生因进一步学习或科研工作的需要,需补修除上述三门课程以外的大学本科的其他课程,此类课程不能顶替本学科规定的学位课程和非学位课程,不计学分。

五、实践环节与学术活动

包括教学实践、社会实践和学术活动,均为必修环节。

1、教学实践。

教学实践是培养研究生教学工作能力的一个重要环节。教学实践必须面向本科生,参加教学第一线工作,其工作量约折合讲课学时 16 个学时,时间一般安排在第二学年,经导师考核,成绩合格以上为通过,计 1 学分。

2、社会实践。

学院及研究生导师应为研究生安排不少于2个月的社会体验或社会服务,一般安排在第一学年末的8月至10月份。导师可以安排研究生做有工程应用背景的课题或从事社会调查研究;可以安排研究生到"研究生联合培养基地"或企、事业单位结合学科特色解决技术问题;可以安排研究生到政府部门从事管理工作或服务性工作;研究生可以根据自身就业需要自己安排社会实践(包括短期打工),目的是锻炼研究生的人际交往能力、实际工作能力、提高就业能力。该实践结束后,研究生应写出不少于3000字的实践心得体会,实践单位签字盖章、导师签字后即可获得1学分。

3、学术活动。

研究生提交答辩申请前应结合自己的论文工作在本科生、研究生和教师的范围内作学术报告至少 1 次,聆听学术报告 10 次以上。提交答辩申请前,研究生应将学术活动登记表提交导师,由导师评定成绩,通过者获得 1 学分。研究生在校期间应积极参加科学研究,在申请硕士学位前应有以第一作者公开发表的与学位论文研究内容相关的学术论文 1 篇,第一署名单位应为济南大学。

六、中期筛选

中期筛选是在研究生课程学习基本结束之后,学位论文研究之初,以研究生的培养计划为依据,对研究生的学习成绩、政治思想、道德品质、科研能力等方面进行的一次综合考核。具体操作参照《济南大学硕士研究生中期筛选暂行办法》。

七、学位论文工作

硕士学位论文是衡量研究生培养质量的重要标志,是能否授予学位的主要依据。研究生应在导师的指导下认真做好论文工作计划与开题报告。论文工作应尽早开始,论文研究工作时间(从开题报告通过之日起至申请学位论文答辩止)不得少于一年。

1、开题报告

开题报告内容、开题的程序及成绩评定等参照《济南大学硕士学位论文开题及中期检查工作暂 行办法》执行。

2、论文中期检查

在学位论文工作中期,各学院应按学科专业组织检查小组对研究生的综合能力,论文工作进度 及工作态度、精力投入等方面进行检查。具体规定参照《济南大学硕士学位论文开题及中期检查工 作暂行办法》执行。

3、学位论文答辩

学位论文答辩和学位授予工作按《济南大学硕士学位授予工作暂行实施细则》办理。

八、培养方式

研究生培养采取课程学习和学位论文工作相结合的方式。整个培养过程应贯彻理论联系实际的方针,使硕士研究生掌握本专业的基础理论和专门知识,掌握科学研究的基本方法,加强研究生的自学能力、动手能力、表达能力、写作能力、创新能力的培养。培养方式应充分发挥导师负责与指导小组集体培养相结合的方法,鼓励与社会力量联合培养,建立和完善有利于研究生快速适应社会的培养机制,更多地采用启发式、研讨式的教学方法。

九、毕业及学位授予

研究生在修业年限内按培养方案的要求,修满应修学分,完成必修环节,通过学位(毕业)论 文答辩,准予毕业并发给研究生毕业证书。符合学位授予条件者,由学校颁发理学硕士学位证书。

十、其他

1、培养方案的制(修)订工作由学校统一布置,由学院学位评定分委员会审核,经学校批准备案后执行。

- 2、培养方案一经批准,应严格执行,不得随意改动。如遇特殊情况确需修订的,必须按上述程 序审批。
- 3、指导教师或指导小组应按照培养方案的要求,根据因材施教的原则,指导研究生制定出个人培养计划。
- 4、此培养方案适用于本学科全日制学术型硕士研究生,自 2012 级开始实行,由研究生处负责解释。

十一、参考书目

- 1、咯兴林. 高等量子力学(第二版). 高等教育出版社, 2001.
- 2、李正中. 固体理论(第二版). 高等教育出版社, 北京, 2002.
- 3、叶佩弦. 非线性光学物理. 北京大学出版社, 北京, 2007.
- 4、侯云智. 群论基础教程. 山东大学出版社, 济南, 1997.
- 5、金广浩. 基本粒子及其相互作用. 世界图书出版公司, 2010.
- 6、赵建林. 高等光学(第一版). 国防工业出版社, 北京, 2002.
- 7、黄婉云. 傅里叶光学. 北京师范大学出版社, 北京, 2003.
- 8、雷玉堂. 光电检测技术. 中国计量出版社, 北京, 1997.
- 9、陈锺贤. 计算物理学. 哈尔滨工业大学出版社, 哈尔滨, 2006.
- 10、陈宏芳. 粒子探测技术. 中国科学技术大学出版社, 合肥, 2009.
- 11. Albert Einstein, Relativity. Pearson Education, Inc, 2005.
- 12、陆栋, 谢希德. 固体能带理论. 复旦大学出版社, 上海, 2007.
- 13、戴道生. 铁磁学. 科学出版社, 北京, 2000.
- 14、高崇寿. 群论及其在粒子物理学中的应用. 高等教育出版社, 1992.
- 15、周邦融. 量子场论. 高等教育出版社, 2008.
- 16、冯端. 凝聚态物理学新论. 上海科技出版社, 上海, 1992.
- 17、刘吉平. 纳米科学与技术. 科学出版社, 北京, 2002.
- 18、郭光灿. 量子光学. 哈尔滨工业大学出版社, 哈尔滨, 1990.
- 19、弗吕威尔特等著. 朱永生等译. 实验数据分析方法: 高能物理数据分析. 中国科学技术大学出版社, 合肥, 2011.
 - 20、汪晓莲等著, 高能物理实验方法: 粒子探测技术, 中国科学技术大学出版社, 合肥, 2009.
 - 21、侯宏录. 光电子材料与器件. 国防工业出版社, 2012.
 - 22、Silvio Bonometto. Modern Cosmology. IOP Publishing Ltd, 2002.

"物理学"一级学科硕士学位研究生课程设置表

		70年于 30年7	火工丁匹则		外往及	<u> </u>		
课程 性质	课程编号	课程名称	学时	学分	开课 学期	开课单位	备注	
	SS991014	中国特色社会主义理论与 实践研究	36	2	秋	马克思主义学院	必修	
	SS991015	自然辩证法概论	18	1	秋	马克思主义学院	必修	
	SS991004	研究生基础英语	64	3	秋	外语学院	必修	
	SS991005	高级英语	32	1.5	秋	外语学院	任选 一门 必选	
学	SS991006	英语口语口译	32	1.5	春	外语学院		
位	SS991007	实用英文写作	32	1.5	春	外语学院		
	SS031007	专业外语	32	1.5	春	物理学院		
\H	SS031012	高等量子力学	48	3	秋	物理学院	至少	
课	SS031005	群论	48	3	秋	物理学院		
	SS031013	固体理论	48	3	秋	物理学院		
	SS031003	非线性光学	48	3	春	物理学院	选 9 - 学分	
	SS031004	高等光学	48	3	春	物理学院		
	SS031014	粒子物理	48	3	春	物理学院	1	
	SS033001	傅里叶光学导论	32	2	秋	物理学院		
	SS033011	光电检测原理	32	2	秋	物理学院		
	SS033016	计算物理	32	2	秋	物理学院		
	SS033056	光电子材料与器件	32	2	秋	物理学院		
	SS033057	高能物理实验技术	32	2	秋	物理学院	至少	
	SS033058	量子规范场论	32	2	春	物理学院		
非	SS033059	广义相对论基础	32	2	秋	物理学院		
	SS033060	固体能带理论	32	2	春	物理学院		
, ,,	SS033061	铁磁学	32	2	秋	物理学院		
学	SS033002	现代物理实验	32	1	春	物理学院		
	SS033062	粒子物理群方法	32	2	春	物理学院	选 9	
<i>1</i> 2-	SS033063	量子场论	32	2	秋	物理学院	学分	
位	SS033064		32	2	春			
	SS033013	物理学新进展	32	1	春	物理学院	1	
课	SS033017	凝聚态物理	48	3	春	物理学院		
床	SS033065	纳米材料与技术	32	2	春	物理学院	†	
	SS033066	量子光学	32	2	春	物理学院		
	SS033067	现代宇宙学基础	32	2	春	物理学院		
	SS033068	高能实验数据分析	32	2	春	物理学院		
	SS153001	数学软件及应用	32	1	春	数学学院	1	
	SS994001	知识产权与学术论文规范	24	1	春	法学院 学报	1	
实践环节		社会实践	≥2 个月	1				
		教学实践	16	1			· 必修	
			≥10 次	1			1	

备注:同等学力硕士研究生,必须补修本科主要课程 2-3 门。补修课程由导师参照专业方向提出建议,学院根据本科生的教学计划,统筹安排。补修课程不计学分。